Graph-Based Decoding Model for Functional Alignment of Unaligned fMRI Data
نویسندگان
چکیده
منابع مشابه
Identification of mild cognitive impairment disease using brain functional connectivity and graph analysis in fMRI data
Background: Early diagnosis of patients in the early stages of Alzheimer's, known as mild cognitive impairment, is of great importance in the treatment of this disease. If a patient can be diagnosed at this stage, it is possible to treat or delay Alzheimer's disease. Resting-state functional magnetic resonance imaging (fMRI) is very common in the process of diagnosing Alzheimer's disease. In th...
متن کاملClassification of spatially unaligned fMRI scans
The analysis of fMRI data is challenging because they consist generally of a relatively modest signal contained in a high-dimensional space: a single scan can contain millions of voxel recordings over space and time. We present a method for classification and discrimination among fMRI that is based on modeling the scans as distance matrices, where each matrix measures the divergence of spatial ...
متن کاملSpatial Alignment of Functional Regions in fMRI
An essential step for discovering a common structure in brain activation regions from multi-subject fMRI data is the ability to find spatial correspondences across subjects. This has proven to be a challenging problem due to the lack of a ground truth and variability in anatomical brain structure, functional activation, and spatial locations of functional regions. Standard methods rely on the c...
متن کاملfMRI-Based Inter-Subject Cortical Alignment Using Functional Connectivity
The inter-subject alignment of functional MRI (fMRI) data is important for improving the statistical power of fMRI group analyses. In contrast to existing anatomically-based methods, we propose a novel multi-subject algorithm that derives a functional correspondence by aligning spatial patterns of functional connectivity across a set of subjects. We test our method on fMRI data collected during...
متن کاملfMRI alignment based on local functional connectivity patterns
In functional neuroimaging studies, the inter-subject alignment of functional magnetic resonance imaging (fMRI) data is a necessary precursor to improve functional consistency across subjects. Traditional structural MRI based registration methods cannot achieve accurate inter-subject functional consistency in that functional units are not necessarily consistently located relative to anatomical ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the AAAI Conference on Artificial Intelligence
سال: 2020
ISSN: 2374-3468,2159-5399
DOI: 10.1609/aaai.v34i03.5650